
363 

 

 
 

Heterocyclic Letters                                                                                                               

Vol. 12| No.2|363-371|February -April|2022        

ISSN : (print) 2231–3087 / (online) 2230-9632  

CODEN: HLEEAI 

http://heteroletters.org 

 

 

NANO CRYSTALLINE CUFE2O4 CATALYZED DOMINO 

HETEROCYCLIZATION OF PYRANO- FUSED BENZOTHIAZOLOPYRIMIDINES 

 
 

Anand Kumar Arya* 

 
aDESM, Regional Institute of Education, NCERT, AJMER-305004, (Rajasthan) India 

*E-mail : anandarya2001@yahoo.com 

 

 

ABSTRACT: An efficient and facile, one-pot domino heterocyclization of structurally diverse 

pyrano- fused benzothiazolopyrimidines derivatives have been achieved. The Nano sized 

CuFe2O4 have employed as potential catalyst for the synthesis of functionalized 

benzothiazolopyranopyrimidines derivatives for the one-pot three component reaction of 

tetrahydropyran-4-one with 2-aminobenzothiazole and aryl aldehydes in aqueous ethanol 

under environment benevolent condition. The combination of magnetic nano-catalyst and 

multicomponent reactions have ideally satisfied the development of sustainable methods in 

green synthetic chemistry. 

 

KEYWORDS: Multicomponent Domino synthesis; Heterocyclization, Nanocatalysis; 

CuFe2O4 NPs 

 

INTRODUCTION 

 

Heterocyclic compounds are the core component of more than 70% of modern drugs. Among 

them the medicinally privileged heterosystems are always been the target for medicinal 

chemistry research due to their unique binding abilities with the biological substrates. Due to 

enhanced environmental consciousness, in recent years, the design and synthesis of small drug 

like fused heterocycles following green chemistry principles is on elegant target.iIn this 

context, the synthetic protocols which minimizing the synthetic steps are favoured. One of the 

ways to fulfill these requirements is the development and use of Multicomponent Domino 

Reactions (MDRs).ii In MDRs all the reagents are added to the reaction mixture in a single 

operation and, isolation and purification procedure of intermediates is minimized.iii Therefore, 

the design of new selective domino protocols is a continuing challenge at the forefront of 

organic chemistry.  

Green chemistry endeavor, ‘Nanocatalysis’ is viable alternatives to the conventional catalytic 

materials. Among this, the Metal Oxide Nano (MON) particles have recently used as catalyst 

due to their large surface to volume ratio, compared to their bulk analogues.iv However, the 

isolation and recovery of these nanocatalyst from the reaction mixture is not so easy. To 

overcome this issue, magnetic nanoparticles have received considerable attention because of 
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their facile separation from the reaction mixture with an external magnet. Recently, the copper 

ferrite nanoparticles have been utilized as potential catalyst the multicomponent synthesis of 

various biologically interesting compounds viz. 1,4-disubstituted 1,2,3-triazolesv, S-arylated 

thioureavi, 1,2,4,5-tetrasubstituted imidazolesderivativesvii,functionalized spirooxindolesviii, 

spiropyrimidinederivativesix, chromenopyrrol-4(1H)-one derivativesx, 4H-chromenes and 

1,2,3-triazole derivatives.xi 

Pyrimidines compose an important class of heterocycles and their structural framework is a 

key constituent of numerous natural biologically active.xii The pyrano-fused pyrimidines, as a 

key pyrimidine family, showed a wide range of pharmacologicalxiii and biological activities 

such as anti-inflammatory, analgesic importantly, in vitro anti-aggregating, antifungal, 

antibacterial, antiviral and cytotoxic activity.xivThe 2-aminobenzothiazole core, as a privileged 

scaffold, represents ubiquitous structural motifs, which are frequently encountered in natural 

products and in the drugs for the treatment of various diseases, such as tuberculosis, viral, 

epilepsy, diabetes, malaria, and tumors etc.xv 

In view of the importance of pyranopyrimidine derivatives, several methods for their synthesis 

were reported.xvi However, with a literature survey, we noticed that benzothiazole fused 

pyranopyrimidine has not been documented. Therefore, in continuation with our endeavours in 

exploring novel one-pot reactionsxvii-xxii we hope to searching for more elegant synthetic 

methods for the construction of the privileged heterocyclic pharmacophore incorporating 

pyrano and benzothiazole fused pyrimidines in a single molecule. 

Herein, an efficient and high yielding protocol for the synthesis of functionalized pyrano- fused 

benzothiazolopyrimidine derivatives by one-pot three-component reaction of tetrahydropyran-

4-one with 2-aminobenzothiazole and aryl aldehydes using reusable magnetic CuFe2O4 

nanoparticles as a novel and eco-friendly heterogeneous catalyst is reported. To the best of our 

knowledge, no methodology has been reported on the use of CuFe2O4 NPs for the synthesis of 

functionalized pyrano- fused benzothiazolopyrimidine derivatives. 

 

EXPERIMENTAL 

 

Material and Methods: The melting points of all the synthesized compounds were determined 

on the electrothermal melting point apparatus using open capillary tubes and are reported 

uncorrected. 2-Aminobenzothiazole were synthesized by reported method.xviiTetrahydropyran-

4-one and aryl aldehydes were purchased from the commercial sources and were used without 

purification. The purity of all the synthesized compounds was checked by thin-layer 

chromatography. IR spectra were recorded on a Shimadzu 8400S FTIR spectrometer. 1H and 
13C NMR spectra were recorded on a Bruker DRX300 Advance Spectrometer at 300.13 and 

75.47 MHz, respectively. In all cases, NMR spectra were obtained in hexadeuterated dimethyl 

sulfoxide (DMSO-d6) using tetramethylsilane as internal standard. The NMR signals are 

reported in δ ppm. Analytical and spectral data of the synthesized compounds are in agreement 

with their proposed structures. 

 

General procedure: 

 

Synthesis of Nanoparticles (NPs) 

The metal oxide and mixed metal oxide at nano scale were prepared by single step chemical 

method. The nanostructured of α-Fe2O3, CaO, CuFe2O4 and Fe3O4 nanoparticles were designed 

and synthesized modifying the method. 
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Typical procedure for synthesis of CuFe2O4 nanoparticles 

A round bottom flask was charged with 5 mmol of ferric nitrate and 2.5mmol of copper nitrate 

in 10 mL deionized water. The mixture was treated 7 mL of 4M NaOH in 15 min to form a 

reddish-black ppt. The mixture was stirred magnetically at 85 °C for 2 hours. The reaction 

mixture was cooled to room temperature. The particles were separated by magnet. The 

separated catalyst was washed with water and placed in oven overnight at 100 °C. The scanning 

electron microscopy (SEM) images were investigated to study the surface morphology of the 

prepared metal oxide nano particles (Figure 1). 

 
Figure. 1SEM image of CuFe2O4 NPs 

 

Typical procedure for synthesis of benzothiazolo[2,3-b]pyrano[3,4-d]pyrimidine 

derivatives 

A mixture of tetrahydropyran-4-one, 2-aminobenzothiazole (2 mmol) and aryl aldehyde (2 

mmol) were placed in a 25 ml round-bottomed flask in 5 mL of aqueous ethanol (ethanol: 

water: v: v/1:1). Sequentially Nano CuFe2O4 (10 mol %, 24 mg) was added. The reaction 

mixture was stirred at 80 °C for requisite time. The reaction was monitored by TLC. After 

completion of reaction, the reaction mixture was cooled to room temperature and added with 

10 mL ethanol. The reaction mixture was stirred with 10 ml ethanol for 3 min. A few seconds 

after, stirring was stopped, the catalyst was easily separated by a magnet. The catalyst could be 

separated easily by simple magnetic separation for the reaction mixture. The crude product was 

recrystallized by ethanol to afford the product. 

 

RESULTS AND DISCUSSION 

At the onset of our investigation, for the synthesis of pyrano- fused benzothiazolopyrimidine, 

the reaction of tetrahydropyran-4-one 1 (2 mmol), 2-amino-6-bromo-4-methylbenzothiazole 2 

(2 mmol) and p-anisaldehyde 3 (2 mmol) was selected as prototypical reaction (Scheme 1) to 

screen the experimental conditions using different catalysts and solvents as presented in Table 

1. 
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Scheme 1: Model reaction 

At first, we employed Brønsted and Lewis acid catalysts such as sulfamic acid, andp-

toluenesulphonic acid judge their catalytic efficacy for the three-component reaction in ethanol 

at 80 oC. It is also noteworthy to mention that poor yield of the desired product was obtained, 

when three component coupling reaction was performed with Sulfamic acid and p-TSA (Table 

1, entries 1–2).  

As shown in table 1, NPs (Fe3O4, Cao, α-Fe2O3, CuFe2O4) shown pronounced catalytic activity 

and results into very good to excellent yield of the desired product (Table 1, entries 3–7). 

However, when the reaction was performed in the presence of Copper Ferrite, CuFe2O4 

nanoparticles as catalyst in ethanol and water as solvent, the yield of the desired product was 

90% and 83% respectively with shorter reaction time. It was observed that best results (yield 

92 % in 52 min) was obtained when the reaction was performed in ethanol: water (v:v/1:1) 

solvent system. The effect of catalyst loading was also examined and observed that 10 mol % 

of CuFe2O4 NPs is sufficient to give the maximum yield of the product in shortest time. The 

yield remained unaffected when the catalyst loading was increased to 15 mol%. The effect of 

temperature on catalytic activity of CuFe2O4 nanoparticles was also examined and 80 oC was 

found to be the optimum temperature for maximum catalytic efficiency of CuFe2O4 

nanoparticles.  

 

Table 1: Optimization of reaction conditionsa 

 

Entry Catalystb Solventc Time  Yield (%)d 

1  Sulfamic acid  Ethanol 10 h 40 

2  p-TSA Ethanol 10 h 42 

3  Fe3O4 NPs  Ethanol 2 h 90 

4  Cao NPs  Ethanol 4 h 75 

5  α-Fe2O3 NPs Ethanol 3 h 86 

6  Fe3O4 NPs Water  3 h 85 

7  CuFe2O4 NPs  Ethanol 1 hr 40 min 90 

8  CuFe2O4 NPs  Water 3 h 83 

9  CuFe2O4 NPs  Ethanol:water (v:v/1:1) 52 min 92 

10  CuFe2O4 NPs  1,4-dioxane 2 h 59 

11  CuFe2O4 NPs  Dicholoroethane 3 h 55 

12  CuFe2O4 NPs  DMF 2 h 50 

13  CuFe2O4 NPs  Methanol 55 min 88 
a tetrahydropyran-4-one (2 mmol), 2-amino-6-bromo-4-methylbenzothiazole (2 mmol)       

  and p-anisaldehyde (2 mmol) were stirred at 80 oC till completion of the reaction as indicated 

by TLC;  
b 10 % mol of catalyst loaded;  
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c solvents (5.0 mL);  
d isolated yield 

In order to explore the scope of the identified optimal reaction conditions, the catalytic domino 

reaction protocol was extended to the variety of substrates (Table 2) for synthesis of 

benzothiazolo[2,3-b]pyrano[3,4-d]pyrimidine (scheme 2) 

 

Scheme 2 Schematic presentation of synthesis of benzothiazolo[2,3-b]pyranopyrano[3,4-

d]pyrimidine derivatives 
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Table 2: Synthesis of benzothiazolo[2,3-b]pyrano[3,4-d]pyrimidine derivatives 

S.No. R1 R2 R3 R4 R5 Product  Reaction time % yield 

1.  CH3 H Br H OCH3 4a  25 min 95 

2.  H CH3 H CH3 OCH3 4b  36 min 94 

3.  H H CH3 H OCH3 4c  30 min 94 

4.  CH3 H Br H Cl 4d  34 min 91 

5.  H CH3 H CH3 Cl 4e  23 min 92 

6.  H H CH3 H Cl 4f  30 min 95 
a tetrahydropyran-4-one (2 mmol), 2-aminobenzothiazole (2 mmol) and arylaldehyde (2 mmol) 

were stirred at 80 oC till completion of the reaction as indicated by TLC;  
b 10 % mol of catalyst loaded;  
c solvent; Ethanol:water (v:v/1:1); 5.0 mL; 
d isolated yield 

The reaction mechanism probably involves the formation of adduct by the Knoevenagel-type 

reaction of aryl aldehydes 3 and tetrahydropyran-4-one1, followed by 3+3 cyclization with 2-

aminobenzothiazole 2 to give the desired product 4facilitated by CuFe2O4 NPs. 

 

Recyclability and Reusability of the Nano catalyst 

The possibility of recyclability and reusability of nano- CuFe2O4 catalyst was examined on the 

model reaction under optimized reaction conditions. After completion of the reaction, the 

reaction mixture was stirred with 10 ml ethanol for 3 min. A few seconds after, stirring was 

stopped, the catalyst was easily separated by a magnet. The recovered catalyst was then washed 

successively with ethanol and distilled water and dried under vacuum. The recycled catalyst 

was found to be reusable for at least four cycles without any considerable loss of activity 

(Figure 2). 
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Figure 2. Recyclability of CuFe2O4 on the synthesis of benzothiazolopyranopyrimidine 

9-Bromo-7-methyl-2-(4-methoxyphenyl)-3H-5,6-dihydrobenzothiazolo[2,3-b]pyrano[3,4-

d]pyrimidine4a 

 

M.p. 238-241°C IR (KBr) cm-1: 1188, 1133, 1061, 832, 592. 1H NMR (DMSO-d6) δ, (ppm): 

2.30 (3H, s, Me), 3.48 (3H, s, MeO), 3.26-3.31 (1H, m, CH2), 3.88 –3.92 (1H, m, CH2), 4.76–

4.96 (2H, m, CH2), 5.69 (1H, s), 6.68-7.47 (6H, m, H-Ar). 13C NMR (DMSO-d6) δ, (ppm): 

33.3, 53.4, 56.0, 66.1, 67.8, 106.8, 113.3, 113.7, 114.0, 114.1, 121.2, 126.6, 129.8, 130.0, 

130.1, 130.2, 138.9, 147.1, 159.0, 163.0, 167. Anal. calc. for C21H19BrN2O2S: C 56.89; H 4.32; 

N 6.32, found: C 56.89, H 4.36, N 6.33. 

8,10-dimethyl-2-(4-methoxyphenyl)-3H-5,6-dihydrobenzothiazolo[2,3-b]pyrano[3,4-d]pyrimidine4b 

M.p. 236-239 °C IR (KBr) cm-1: 1170, 1113, 1078, 592. 1H NMR (DMSO-d6) δ, (ppm): 2.37 

(3H, s, Me), 2.42 (3H, s, Me), 3.56 (3H, s, MeO), 3.47–3.53 (1H, m, CH2), 3.94–3.99 (1H, m, 

CH2), 4.36–4.47 (2H, m, CH2), 5.85 (1H, s), 6.98-7.32 (6H, m, H-Ar). 13C NMR (DMSO-d6) 

δ, (ppm): 27.6, 30.2, 33.1, 53.4, 56.3, 66.1, 67.3, 106.8, 113.1, 114.0, 114.7, 116.8, 120.2, 

129.3, 130.1, 130.6, 131.2, 137.5, 139.1, 147.2, 163.0, 170. Anal. calc. for C22H22N2O2S: C 

69.81; H 5.86; N 7.40, found: C 69.84, H 5.77, N 7.41. 

9-methyl-2-(4-methoxyphenyl)-3H-5,6-dihydrobenzothiazolo[2,3-b]pyrano[3,4-

d]pyrimidine4c 

M.p. 231—235 °C IR (KBr) cm-1: 1153, 1110, 1063, 612. 1H NMR (DMSO-d6) δ, (ppm): 2.28 

(3H, s, Me), 3.42 (3H, s, MeO), 3.31–3.38 (1H, m, CH2), 4.02–4.10 (1H, m, CH2), 4.41–4.49 

(2H, m, CH2), 5.67 (1H, s), 6.65-7.58 (7H, m, H-Ar). 13C NMR (DMSO-d6) δ, (ppm): 27.5, 

33.1, 53.4, 56.1, 66.6, 67.7, 106,8, 114.0, 114.1, 115.3, 119.0, 126.8, 128.0, 129.3, 130.0, 

130.5, 130.9, 137.5, 144.4, 159.0, 160. Anal. calc. for C21H20N2O2S: C 69.20; H 5.53; N 7.69, 

found: C 69.24, H 5.54, N 7.65. 

9-Bromo-7-methyl-2-(4-chlorophenyl)-3H-5,6-dihydrobenzothiazolo[2,3-b]pyrano[3,4-

d]pyrimidine4d 

M.p. 240-243 °C IR (KBr) cm-1: 1170, 1112, 1083, 745, 694. 1H NMR (DMSO-d6) δ, (ppm): 

2.36 (3H, s, Me), 3.31 (1H, s, CH2), 3.72 –3.81 (1H, m, CH2), 4.72-4.80 (2H, m, CH2), 5.92 

(1H, s), 6.97-7.81 (6H, m, H-Ar). 13C NMR (DMSO-d6) δ, (ppm): 28.1, 34.5, 53.4, 66.0, 67.7, 

106.1, 113.3, 114.5, 121.2, 126.8, 128.3, 128.9, 129.9, 130.0, 130.7, 135.8, 137.5, 147.1, 142.3, 

153.8. Anal. calc. for C20H16BrClN2OS: C 53.65; H 3.60; N, 6.26, found: C 53.69, H 3.56, N 

6.28. 
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8,10-dimethyl-2-(4-chlorophenyl)-3H-5,6-dihydrobenzothiazolo[2,3-b]pyrano[3,4-

d]pyrimidine4e 

M.p. 239-242 °C IR (KBr) cm-1: 1191, 1095, 1053, 675, 649. 1H NMR (DMSO-d6) δ, (ppm): 

2.21 (3H, s, Me), 2.38 (3H, s, Me), 3.83–3.91 (1H, m, CH2), 4.15-4.21 (1H, m, CH2), 4.26–

4.31 (2H, m, CH2), 5.63 (1H, s), 6.16-7.57 (6H, m, H-Ar). 13C NMR (DMSO-d6) δ, (ppm): 

26.6, 30.6, 35.1, 53.4, 66.8, 67.6, 106.8, 113.1, 114.3, 116.8, 120.2, 128.8, 128.9, 129.8, 130.1, 

130.7, 135.2, 137.5, 139.1, 147.2, 163. Anal. calc. for C21H19ClN2OS: C 65.87; H 5.00; N 7.32, 

found: C 65.84, H 5.01, N 7.36. 

9-methyl-2-(4-chlorophenyl)-3H-5,6-dihydrobenzothiazolo[2,3-b]pyrano[3,4-d]pyrimidine4f 

M.p. 241—244 °C IR (KBr) cm-1: 1170, 1158, 1044, 890, 635. 1H NMR (DMSO-d6) δ, (ppm): 

2.21 (3H, s, Me), 3.31–3.36 (1H, m, CH2), 3.65–3.69 (1H, m, CH2), 4.46 (2H, s, CH2), 5.88 

(1H, s), 6.71-8.18 (7H, m, H-Ar). 13C NMR (DMSO-d6) δ, (ppm): 25.5, 33.6, 53.4, 66.8, 67.9, 

106.1, 115.3, 119.0, 126.8, 128.0, 128.7, 128.8, 129.6, 130.0, 130.7, 130.8, 135.8, 137.5, 144.4, 

163.0. Anal. calc. for C20H17ClN2OS: C 65.12; H 4.65; N 7.59, found: C 65.14, H 4.61, N 7.55. 

 

CONCLUSION 

In conclusion, we have developed the nano copper ferrite catalyzed highly efficient and facile 

one-pot domino synthesis of functionalized benzothiazolopranopyrimidine derivatives by 

three-component reaction of tetrahydropyran-4-one with 2-aminobenzothiazole and aryl 

aldehydes in ethanol-water system. The magnetic separability and reusability (up to 5 

subsequent cycles) and low loading of catalyst (10% mol) in aqueous ethanol makes the 

protocol attractive, sustainable, and economical. 
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